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SUMMARY:  A particulate approach is used for modelling the compaction behaviour of 
assemblies of aligned fibres. Fibre segments are represented as beams of reducing span subjected 
to 3-point bending as introduced by Gutowski. A more realistic relation between the fibre volume 
fraction and the displacement of the point of application of the contact force is introduced. This 
enables modelling of compaction up to the theoretical maximum fibre volume fraction 
corresponding to triangular alignment without the introduction of fitted parameters of the fibre 
volume fraction. The model is validated for simple assemblies and results for a larger array of 
fibres are presented. The particulate approach predicts more progressive stiffening with lower 
fibre volume fractions reached at practically meaningful compaction pressures. 
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INTRODUCTION 
 
Compaction of reinforcements plays a central role in composites manufacturing. Models of 
compaction were developed [1] as parts of larger models of composites manufacturing processes 
[2]. Among those, Gutowski’s compaction model [3] for aligned fibres is often used as it features 
straightforward analytical elements expressed in a closed-form equation that is easily 
implemented. The model is reviewed as a starting point for the work presented in this paper. 
 
Gutowski’s model has two main features. Firstly, fibre segments are represented as beams in 3-
point bending; beam length reduces as compaction proceeds hence both the number of fibre-to-
fibre contacts and the stiffness increase. Secondly, simple geometric relations are derived where 
the 1D displacement of the point of application of the force on the beam is transformed into a 
change of fibre volume fraction in the 2D section normal to the yarn length. The first feature was 
substantiated by Gutowski using imaging. The second feature brings limitations to the model. 
The fibre volume fraction vf is approximated as the ratio of the volume of the fibre segment to 
that of a rectangular prism encompassing it. The height, length and in some cases the width of the 
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prism decrease as compaction proceeds, with the yarn represented as a series of prisms stacked 
regularly along their height, length and width. This regular stacking of fibre segments enables a 
closed-form equation but it is not representative of the different directions along which parallel 
fibres may interact in reality. It also imposes an unrealistic theoretical maximum on vf equal to 
π/4 as shown below. Gutowski lifted this restriction by introducing fitted parameters. The 
resulting model describes the basic physical phenomenon that occurs during compaction and it is 
suitable to fit experimental data but the fitting parameters make it less analytical and more 
empirical. In this paper, particulate methods are used along with the first feature of Gutowski’s 
model in developing a 2D model of compaction that better represents reality and uses less fitted 
parameters. The primary contribution is superior modelling of fibre positions and interactions. 
The approach is validated by comparing with Gutowski’s model for simple assemblies of fibres, 
and results are presented for a more realistic assembly of fibres. Practical use of the results is 
discussed. 
 
 

DEVELOPMENT 
 
Gutowski’s Compaction Model 
 
Gutowski’s model assumes that instead of being perfectly straight individual fibres in yarns 
undulate regularly in the vertical plane. A fibre segment submitted to 3-point bending as a result 
of contact with other fibres is illustrated in Fig. 1 with diameter d, length L, modulus E, second 
moment of inertia in bending I and contact force F. The relation between the vertical deflection δ 
and the contact force F at the centre of the segment is: 
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The length of the segment L and the deflection δ are defined as:  
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where l, lmin and lo are the height, minimal height and initial height of the prism encompassing the 
fibre, and β is a parameter that is either evaluated by microscopy or fitted to experimental results. 
It is assumed that lmin is equal to d.  
 
Two versions of the model’s second feature were proposed, leading to two different versions of 
the model. In the first version the width of the prism w is assumed to stay equal to its height at all 
times during compaction (w = l). In the second version w is assumed to stay constant and equal to 
d (w = d). The following relations between the vf , the initial fibre volume fraction vo and the 
maximum fibre volume fraction va result for the first (w = l) and second (w = d) versions of the 
model respectively: 
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The relations between the pressure and the fibre volume fractions for the first (w = l) and second 
(w = d) versions of Gutowski’s model are respectively: 
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The maximum vf allowed by both versions of the model is π/4 unless va is used as a fitted 
parameter. Effectively both va and vo are used as fitted parameters along with β. The two versions 
of the model give comparable results as the force rises at vf values that are close to va where 
differences in l at the same vf between the two versions become negligible. 
  
 
 
 
 
 
 
 
 
 
 

Fig. 1  Fibre segments and encompassing prisms in Gutowski’s model. 

 
Statistical Particulate Approach 
 
Limitations related to the second feature of Gutowski’s model are removed using a statistical 
particulate approach [4]. In the current approach a rectangular domain D is populated with n 
fibres positioned randomly. Fibres are tentatively displaced simultaneously from their positions 
within a circle of radius r, with r < d/2. The sum of force amplitudes E between pairs of fibres 
separated by a distance s with lmin < s < lo is calculated: 
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where lo is the initial distance between fibre centres, lmin , is again equal to the fibre diameter d, 
and x , y are the coordinates of fibre centres. Tentative positions are maintained if E is reduced by 
the displacements and the process is repeated until E is miminised. Compaction pressure is 
obtained: 
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where dw is the known domain width and the value of l in L is approximated as the minimum 
value of l for all pairs of fibres (i = 1 to n, j = 1 to n, i ≠ j). Compaction is simulated by 
progressively reducing the domain height dh . Fibres located near the top domain boundary are 
displaced, forces are re-equilibrated and P is re-calculated at each step. 
 
Values of vf are simply obtained by dividing the total cross-section area of n fibres by the cross 
section area of the domain. As the particulate approach is based on forces between pairs of fibres 
one should note that the resulting relation between δ and vf is different from that of Gutowski at 
small n because the calculation of vf is different. Fig. 2 compares a single fibre in the second 
version of Gutowski’s model with the simplest case that can be handled by the particulate 
approach, one force between two fibres. The same initial distance between fibres lo and fibre 
diameter d lead to different values of vo for small n. The way in which vf is calculated in 
Gutowski’s model is useful in that context because it allows the scaling of the P-vf relation 
obtained for a single fibre to a whole assembly of parallel fibres; the relation stays the same for 
any number of fibres. In our approach the relation converges rapidly as n increases. This 
expected convergence is irrelevant in practice as the particulate approach is aimed at large 
assemblies of fibres. This point of detail is only mentioned to address questions that may arise 
when comparing results from the simplest case that the particulate model can handle with those 
obtained from Gutowski’s model, as discussed below. 

 

               
 

Fig. 2  Comparing vf for 2nd version of Gutowski’s model with particulate approach at n = 2. 
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VALIDATION AND COMPARISONS 
 
Case 1: n = 2  
 
A first validation was conducted for the case of 2 fibres shown in Fig. 2. Fig. 3 shows P-vf curves 
for the particulate approach and the second version of Gutowski’s model with lo = 50×10-6 m, lmin 
= d = 10×10-6 m, β = 280 [3], dw = 10×10-6 m and dh = 60×10-6 m, up to P of approximately 
6×106 Pa. For any given l, values of δ, F and P are the same in both cases whilst vf is larger for 
the particulate approach. As expected, for n = 2 the particulate approach shows lower pressure P 
for the same vf . Fig. 3 also shows a curve of Gutowski’s model with vf altered to account for the 
difference mentioned above. This curve superimposes with results from the particulate approach. 
 
Case 2: Single Column, w = d, n = 10 
 
A second validation was conducted for 10 fibres positioned in a single vertical column. Fig. 4 
shows P-vf for the particulate approach and the second version of Gutowski’s model without 
alteration to vf values, with lo = 50×10-6 m, lmin = d = 10×10-6 m, β = 280, dw = 10×10-6 m and dh 
= 51×10-5 m, up to P of approximately 7×105 Pa. At any given pressure P, vf is only marginally 
larger for the particulate method. This shows that the P-vf curve converges rapidly with n and that 
the two models predict virtually similar behaviour for this simple case. 
 
Case 3: Double Column, w = 2d, n = 20 
 
A third validation was conducted to illustrate a specific aspect of the particulate approach. 20 
fibres were positioned in two vertical columns with dw = 20×10-6 m and dh = 51×10-5 m. The 
domain is similar to twice Case 2 side by side; other parameters were unchanged. Fibres were 
seeded so that minimization would naturally lead to the staggered configuration shown in Fig. 5 
which is more stable than aligned prisms in Gutowski’s model. Fig. 5a shows P-vf for the 
particulate approach and Gutowski’s model up to P = 3×107 Pa. As expected the behaviour at 
higher P is similar to that observed for Case 2 and to unaltered results of Gutowski’s model in 
Case 1. Fig. 5b shows the same curve up to P = 1×105 Pa and vf of 0.6. At this stage of the 
compaction staggered fibres are closer to each other along the vertical though they are not 
perfectly aligned along the horizontal as in Gutowski’s model. Therefore, P is larger in this more 
realistic configuration and increases more progressively at levels relevant to VARTM and RTM. 
 
Case 4: Double Column, w = 2d ⋅ cos(30°), n = 20 
 
A last validation was conducted to illustrate an important aspect of the particulate approach. A 
total of 20 fibres were positioned in two vertical columns with dw = 18.66×10-6 m and dh = 
51×10-5 m. Other parameters were unchanged. The domain has the same initial height than that of 
Case 3, but its width corresponds to two rows of fibres aligned in a triangular configuration (Fig. 
6). These small domains lead to simple compaction behaviour: fibres are forced into square and 
triangular arrays in Cases 3 and 4. Case 4 illustrates that the particulate method allows larger vf 
values. Fig. 6a shows P-vf for the particulate approach and Gutowski’s model up to P = 1.5×109 
Pa. Below vf ≅ 0.75 Case 4 gives larger P than Gutowski’s model as discussed in Case 3. Beyond 
vf ≅ 0.75, P from Gutowski’s model quickly rises towards infinite at vf = 0.785. The curve 



 

generated using the particulate approach raises more progressively towards infinite at vf = 0.906. 
The latter behaviour is more realistic, with P limited to 1.0×105 Pa for VARTM and 1.0×106 Pa 
for RTM. 
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Fig. 3  Compaction curves, Case 1. 
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Fig. 4  Compaction curves, Case 2. 
 
 

RESULTS 
 
An assembly of 25 particles was compacted using the particulate approach with parameters as 
above. The compaction curve appears in Fig. 7 whilst Fig. 8 shows initial fibre positions, 
positions after equilibrium and positions during compaction. At compaction pressures P 
representative of liquid moulding processes the stiffening of the fibre assembly is progressive, 
with vf values below 0.7. It should be noted that in this case the fibre volume fraction is 
underestimated by approximately 10% as a result of the combined natural alignment of fibres and 
artificial nature of the straight boundaries. Such restrictions will fall when the particulate 
approach are combined to more extensive geometric descriptions of reinforcement unit cells. 
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Fig. 5  Compaction curves, Case 3. 
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                                                Fig. 6  Compaction curves, Case 4. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Compaction curve for 25 fibres. 
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Fig. 8  25 fibre positions: initial , 1st equilibrium, during compaction (left to right). 
 
 

CONCLUSION 
 
In this paper a statistical particulate approach was applied to the compaction of assemblies of 
parallel fibres as found in yarns. The particulate approach was validated using simple cases and 
demonstrated for a larger array of fibres. Interaction between 2 fibres is described in a similar 
way as in Gutowski’s well-known model, though other relations could also be used. The main 
contribution of this work is a better representation of the relative positions of fibres and their 
interactions. At compaction pressures representative of those encountered in VARTM or RTM 
the approach predicts more progressive stiffening with vf values lower than those predicted by 
Gutowski’s model. The basic P-vf relation derived from the model can be fitted to a simple 
equation and used in larger models of composites manufacturing processes. 
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